Most times people know exactly what they want but finding the original of the exact product is where you need is where the expert comes in. An entire solar project can crash with one misfit fake product. So there is no room for guess works or being tutored in the market by the sellers, connect with our Electrical Engineers for the best fit products for all your Solar Projects.

Avaliable Accessories include

Solar Panels

Solar Panels or PV modules are the most commonly known component in a photovoltaic array. Made up of mostly solar cells, framing, and glass; solar panels work by collecting and harnessing photovoltaic energy from the sun, and delivering that energy as ‘direct current’ (DC) power to an inverter or converter component (may be a charge controller in some instances).

The DC power generated by a solar module is an electric current that flows in a constant direction. This type of power is generally not readily useable for standard electric demands, and must be translated into ‘alternating current’ (AC) power before it can be used for standard electric devices inside a home or building.

Solar Panels consist of two most well-known types of solar cells, Polycrystalline and Monocrystalline. The difference consists of how silicon crystals in the ingots or wafers are harvested, developed and formed, each creating a different look and color to their appearance. Both types of PV cells are known to be effective in their general ability to produce solar electricity.

Inverters - Inverters(or Converters) intake DC power generated by a solar panel and process that energy by converting it into AC power, the resulting power can then be sent to a breaker or balance of system component and is available for standard use.  Inverters may be located after a charge controller and battery bank in certain off-grid energy systems.

Inverters come in different types of sizes and use various technologies to enable efficiency in the function to produce AC power. The most common inverters are; String Inverters, Central Inverters, Microinverters, and Battery-based Inverters. Each will carry different mechanical and technical characteristics.

String Inverters can be wired for a row of solar panels to connect to one of several strings inside the inverter to accommodate a series of modules, while Microinverters are generally mounted to the back of each panel or (every other panel), to convert energy per module into AC power. Each type of inverter is not necessarily better than another as each one has its benefits and drawbacks, and their technologies are specifically used for application purposes in certain circumstances.

*In addition to Microinverter technology, PV Optimizers are applied similarly to the back of each Solar Module, and connect directly to a concurrent Inverter – which helps maximize yields drawn for the solar panels.

Monitoring - Monitoring Equipment components are usually connected to a concurrent Inverter manufacturer, and they view and relay system energy information analytics to a in product console or web connected device through their proprietary software. Monitoring Equipment components may be integrated into an Inverter, or in some instances – be connected to another component of a photovoltaic array.

Monitoring technology is able to display information ranging from energy generated by the solar panels, to real-time data, to immediate fault detection and troubleshooting, to energy yield data over a set amount of time. A comprehensive Monitoring system can benefit the system operator to better understand the way the solar energy system is operating, (and measures that can be taken to better increase yields, productivity, maintenance and other variables) in real time or over the course of the systems lifespan.

Racking and Mounting components work to ensure a PV array is connected to either the ground or a roof and is made up of multiple key products that encompass an entire racking system.

Most racking systems will use a combination of: Rails, Flashings, Lugs, Mounting Brackets, Wire Clips, Splice Kits, Braces, End Caps, Attachments, Tilt Legs - and other components to complete a full racking and mounting system. Ground mount systems will require concrete and steel piping in addition to a complete racking kit to be placed onto land.

Racking and Mounting is an essential part of any solar energy system. Both roof-top and ground mount arrays need to be set atop a sound and reliable structure to ensure the system can maintain integrity and operate for an extended period of time.

Balance of Systems components work to combine other electrical products within the system, then combining and delivering a series of power control and distribution options for any PV array.

Commonly, most items that make up Balance of Systems products include: DC/AC Disconnects, Junction Boxes, Combiner Boxes, Circuit Breakers, Fuses, Load Centers, Rapid Shutdowns, Surge Devices, among other components that may vary from system to system. These components will differ per individual solar energy system, as some systems will need more or less power control and distribution depending on their application.

Every photovoltaic array needs a series of safeguards and power control options to be available at any time - whether it be for the safety or integrity of the system, or to enable emergency maintenance in case of a fire or other potential issue that may arise. Power Control is necessary in any electric generating system.

Wiring - Wiring acts to ensure other solar energy components are interconnected, and can pass energy from one device onto another. PV Wire is commonly used to move energy from the Solar Modules to the Inverter(s), and then be transformed to be sent for another product within the photovoltaic array supply chain.

Wires will generally be made of aluminum or copper, be solid or standard, are insulated, and meant to either pass through DC current or AC current depending on where they are positioned and connected. Wires will also be color coded for safety and identification purposes by a system operator or inspector who needs to understand which wire controls a certain current, (Positive, Negative, Grounded, etc.)

Standard systems will utilize wires which can hold and pass through certain voltages and wire gauges depending on the PV array setup. These values are commonly dependent upon the voltage of the system and its concurring components used within the interconnected stream of items.

Charge Controllers
Charge Controllers
work to regulate electrical charge and they limit the rate at which electric current is added to or withdrawn from the Batteries. They work to control voltage and watts from Solar Panels; thus, passing through more stable energy, preventing overcharging and protecting against overvoltage - which can hinder and reduce Battery performance or lifespan.

Charge Controllers come with various types of sizes and technologies that enable generally an off-grid (Battery Bank) system to function properly. These two types of technologies are MPPT (Maximum Power Point Tracking) and PWM (Pulse Width Modulation). Charge Controllers are often used within an off-grid or hybrid with battery back-up solar energy system.

A series of Charge Controllers are important for maintaining battery integrity with a system that utilizes them. Due to the sensitive nature of power storage components, it is vital to regulate their ongoing activity to derive the maximum lifespan possible, and helping to reduce future maintenance costs and upkeep.

Batteries - Batteries enable the ability to store solar power for use at a later date. They are used within off-grid or hybrid solar electric arrays, which require power to be used in the case of lack of available sunlight (night time), unstable power distribution from a utility company, or lack of access to a utility supplier.

Off-grid and hybrid systems will often utilize a Battery, (or series of Batteries), to store collected energy delivered by a Charge Controller, Inverter or both – then making the resulting energy ready for withdrawal on demand when a system operator requires it.

Batteries will utilize different types of technologies and materials to enable power storage capability. Usually there are four types of Batteries; AGM, GEL, Flooded, and Lithium Ion – each type uses different fluids and acids that can hold on to energy for an extended period, with slow power depletion.

Each type of Battery will require different amounts of maintenance per technology, and expected lifespans for each technology will be influenced from how a system operator charges, stores, and takes power from the Batteries.